amplifyeyecare-logo-base2-icon
Authors
J. Christopher Edgar, Charles L. Fisk IV, Jeffrey I. Berman, Darina Chudnovskaya, Song Liu, Juhi Pandey, John D. Herrington, Russell G. Port, Robert T. Schultz & Timothy P. L. Roberts

Auditory encoding abnormalities in children with autism spectrum disorder suggest delayed development of auditory cortex

publication date
30 December 2015
see more

Abstract/Introduction

Background

Findings of auditory abnormalities in children with autism spectrum disorder (ASD) include delayed superior temporal gyrus auditory responses, pre- and post-stimulus superior temporal gyrus (STG) auditory oscillatory abnormalities, and atypical hemispheric lateralization. These abnormalities are likely associated with abnormal brain maturation. To better understand changes in brain activity as a function of age, the present study investigated associations between age and STG auditory time-domain and time-frequency neural activity.

Methods

While 306-channel magnetoencephalography (MEG) data were recorded, 500- and 1000-Hz tones of 300-ms duration were binaurally presented. Evaluable data were obtained from 63 typically developing children (TDC) (6 to 14 years old) and 52 children with ASD (6 to 14 years old). T1-weighted structural MRI was obtained, and a source model created using single dipoles anatomically constrained to each participant’s left and right STG. Using this source model, left and right 50-ms (M50), 100-ms (M100), and 200-ms (M200) time-domain and time-frequency measures (total power (TP) and inter-trial coherence (ITC)) were obtained.


Conclusion/Results

Results

Paired t tests showed a right STG M100 latency delay in ASD versus TDC (significant for right 500 Hz and marginally significant for right 1000 Hz). In the left and right STG, time-frequency analyses showed a greater pre- to post-stimulus increase in 4- to 16-Hz TP for both tones in ASD versus TDC after 150 ms. In the right STG, greater post-stimulus 4- to 16-Hz ITC for both tones was observed in TDC versus ASD after 200 ms. Analyses of age effects suggested M200 group differences that were due to a maturational delay in ASD, with left and right M200 decreasing with age in TDC but significantly less so in ASD. Additional evidence indicating delayed maturation of auditory cortex in ASD included atypical hemispheric functional asymmetries, including a right versus left M100 latency advantage in TDC but not ASD, and a stronger left than right M50 response in TDC but not ASD.

Conclusions

Present findings indicated maturational abnormalities in the development of primary/secondary auditory areas in children with ASD. It is hypothesized that a longitudinal investigation of the maturation of auditory network activity will indicate delayed development of each component of the auditory processing system in ASD.


Contact Us To Amplify Your EyeCare

Learn More 

arrow-uparrow-right